
HyperCuts

Packet Classification Using Multidimensional Cutting

Viktor Masicek

Faculty of Mathematics and Physics
Charles University in Prague, Czech Republic

cabadaj@gmail.com

Abstract

This paper describes classification algorithms called HyperCuts and PTree.
Both methods will be compared. HyperCuts and PTree are based on a de-
cision tree structure. HyperCuts is based on range matched and PTree is based
on fixed matched. So, it is the biggest difference. Next difference is number
of fields in nodes. HyperCuts can use more field but PTree not. PTree can
saved rules into arbitrary node, but HyperCuts only into leaves, it is important
different too. HyperCuts is in comparison with PTree better about number of
rules. PTree end by breakdown with much more rules, but HyperCuts is not as
show some tests in [1].

1 Introduction

Demand for speed of packet classification is growing up in core and edge today.
Need and scientific interest are motivation for next working on Packet Classifi-
cation. We have some new ideas, as multidimensional cutting, pulling rules up
in Decision Tree or somewhere linear searching.

1.1 Introduction to classification problem

The Packet Classification problem is to determine the first matching rule for
each incoming message at the router. The rule consists of values which can be
one of three kinds of matches: exact match, prefix match or range match. Lots
of algorithms for Packet Classification exist, now. For example: linear searching,
algorithm with pre-computed earliest rules, RFC or Hierarchical Cuts (HiCuts
[2]) or HyperCuts [1].

1

1.2 PTree vs. HyperCuts

PTree is one of implemented methods. A comparison between the HyperCuts
(HC) method, described in [1], and the PTree (PT) method, described in [3],
is very intricate. At first, the HC method is based on range match. Unlike
HC, the PT method is based on fixed match. At second, the PT method takes
account of rules’ form to a great extent and it is not very efficacious in global
application use. However, the HC method looks for only theoretical solution
and optimization. Format of rules is very important for the HC, but it does not
affect speed and memory as in the PT method.

2 Description of PTree

The basis of PTree [3] is building a tree with information taken from rules. We
build the tree only at the beginning. If a new packet comes, we only traverse
through the tree. And we need rebuild the tree to add some new rules. Travers-
ing the tree in PTree and in HyperCuts is very similar. However building the
tree is not.

Firstly, PTree uses only one field in all nodes in the tree. It is as in HiCuts [2].
HiCuts is older then HyperCuts, but it is easier. On the other hand, in PTree
matched rules can be in all nodes and leaves in the tree. But in HiCuts and
HyperCuts matched rules can be only in leaves.

At first, a set of all fields which are included in all rules is prepared. Fields
have to be ordered by their first bit in packet. Some fields are not determined,
because their place in packet depends on other fields. If a cycle does not come
into existence in dependence fields, we have no problem. In the opposite case
it is impossible to continue in building the tree. After preparing a list of fields
without a cycle, we can start with building the tree.

2.1 Building the tree

Each node in the tree has three sets of information:

• the node position - this position in packet is same as field’s position which
is used in this node

• a list of branches - each branch matches some value

• a list of rules that match at the node.

2

First, we determine the ”nearest” (closest to the start of the packet) field in the
ruleset. This determines the position of the node currently being generated in
the tree.

Now, we have checked all rules in the ruleset whether they comprise ”nearest”
field or not. If yes, then check if there is already a branch with the rule’s
comparison value. Rules with a comparison value are included into the right
branch. New branches are created for rule without a comparison value. If rule
does not compare at the ”nearest” field, then the rule is included into a special
wildcard branch. Special case is empty rule. This rule is included into the
match list in the node. When all rules from ruleset are checked, all rules form
wildcard branch are copied into all other branches. Because the rules in the
wildcard branch do not compare at the current node’s position, they must be
available in every child node for comparison. While rules are added to some
branch ”nearest” field is done off of the rule. It is done, because this field is
resolved in all rules.

Finally, we used recursion to create child nodes. For each branch, same proce-
dures with their set of rules are called.

This process continues while some rule comprises any field.

2.2 Traversing in the tree

For finding matches rules tree is traversed. In each node matched list are copied
into appropriate array. Next, we continue in matched branch. If node has not
any child, then traversing during the tree is stopped. Finally, rules saved in
appropriate array are printed.

3 Description of HyperCuts

In HyperCuts [1], we build a multi-tree and all rules are only in leaves. All
rules consist of fields. These fields are used for decision which branch we have
to continue in tree. Multiple field’s tests can be used in each node.

3.1 Building the tree

Each field represents an interval. If field is used in a node the interval must
be split to elements (smaller intervals). We have to identify set of fields for
each node. At first, we select fields which have the largest number of elements
together. To avoid choosing all fields, we only use fields with number of elements

3

greater than return value of function, depending on set of selected rules. Other
possibility is to use the ration of the number of unique elements to the total
number of possible values covered by the range representing the dimension as a
measure.

When the set of fields is selected we must identify the number of cuts for each
field. It means how many elements each field is split to. We pick set of the
number of cuts for set of field. The set depends on the special constant. Con-
sidering every possible combination is computationally infeasible in reasonable
time. Then we use greedy approach. It is based on finding local optimum of
cuts for every field.

It is possible to use some optimization. In [1] are described four possible opti-
mization: Node Merging, Rule Overlap, Region Compaction, Pushing Common
Rule Subsets Upwards. Of course, some other optimization are applicable.

3.2 Traversing in the tree

Traversing in decision tree is very easy. We select correct array’s elements by
binary shift. It is much less time-consuming. In leaf we use linear searching.
Special constant limits number of rules in leaf. So, the time need for linear
searching in leaf are inconsiderable.

4 Comparison

4.1 Rules and Fields in PTree and HyperCuts

At first, we must compare rules and fields in HyperCuts and PTree. In Hyper-
Cuts all rules have same set of fields. So, some ”unneeded” fields have wildcard
value in some rules. On the other hand, in PTree all fields do not have to be
used in all rules.

Second difference are values in fields. In PTree a field can comprise only one
value (it means one number). On the other hand, in HyperCuts a field can
represent some interval. So, if we take some rules from PTree with same set of
fields we can make only one rule for HyperCuts. If some fields are used in other
rules and are not used in this made rule, then unused fields can be added with
wildcard values.

4

4.2 Data Structure Size

Nowadays, there is no implementation of HyperCuts available. But in [1] in
Figure 18 we can see values which compare three types of databases (ER-
edge router, CR-core router and FW-firewall). Values are counted for different
number of rules. We get similar results for ER and CR. Memory space is linear
dependent on number of rules. But in FW case, we get quadratic dependence.
It is possible, that these results are not perfect, but there are top estimates.

In PTree method the situation is very different. In the worst case, we can have
a great deal of rules and all these rules include some field. It is possible, that
all rules include only this one field. In this case, tree will include only one node
with too much branches. But it is not the main problem. Main problem is
in number of rules. If we make too much rules, then PTree method end by
breakdown. And memory for less rules is not very interest.

4.3 Search Speed

4.3.1 Search Speed - PTree

In PTree the search speed depends the depth of tree. The depth of tree is
evident. If we take a rule with maximum fields considering other rules, then the
depth of tree cannot be bigger, because in each node some field is done off. And
the depth of tree cannot be smaller, because we must use all fields included in
rules. So, the depth of tree (marked DT) is

DT = max
r∈Ruleset

(NumF (r)),

where NumF (r) is number of fields included in rule r. Appropriate rule, which
had maximum number of field is marked RDT . Of course, we can find more
rules with maximum fields, but it is possible to mark whichever rule as RDT .

However, the PTree method has one big handicap. Each node can include many
branches. In the worst case, we must compare all values which correspond with
branches. In each node can be as much branches as are possible values for
selected field in this node. So, this property is very important for the search
speed. In the worst case, in each node, which we have traversed during the
searching, we have all possible branches. That the search speed (marked SS) is

SS =
∑

f∈RDT

IntF (f),

where IntF (f) is number of possible value of field f .

5

4.3.2 Search Speed - HyperCuts

In HyperCuts method the search speed is intricate. We must look at constant
bounding maximum number of branches in a node (mark as B) and maximum
number of rules marked as L) in each leaf. Number of all rules is marked as
R. Suppose that B = 3. Now, we are in a node and we use only one field f .
In the worst case, HyperCuts recursively creates one branch from rules which
include the field f as wildcard. In the worst case this set of ”wildcard-rules”
included all rules except for two rules. Each of these two rules is used, with set
of wildcard-rules, for recursive creation of other two branches.

So, in ”wildcard-branch” we reduced two rules and in other branches we reduced
one rule. If we continue the same way, we will reduce one rule in each node. In
a leaf more rules can be included. So we can determine Search speed (marked
SS)

SS = R− L.

In general case (B is arbitrary) reducing of rules is faster. So, the search speed
can be determined too

SS =
R− L

B − 2
.

But, if we consider very much rules, that R−L ∼ R, because L is imponderable
on R. As well we can vanishes B − 2. So, after both vanish we get

R− L

B − 2
∼ R =⇒ SS = R.

In connection with the search speed, we can consider next property. It is max-
imal length of all prefixes used in all fields. We marked this variable W . If we
have determined number of fields in rules, then number of rules is limited. If
we do not use any prefixes in fields, then all rules included only exact matches.
Because possible values in fields are limited, the number of rules are limited too.
Thus, we can say that W hangs together with R.

4.4 Build/Update Complexity

In both methods we have two main results. Time needed to build one node and
number of nodes in the tree. For better comparison we confront both results
separately.

6

4.4.1 Building HyperCuts

To count up the time needed to build one node, we can use the pseudo code
from [1] on page 220.

1 CreateNodeP(l1, r1, l2, r2, ..., lk, rk, Ruleset);
c1 2 if (R < bucketSize) return;
R 3 for i ←− 1 to k do
R 4 Ni ←− numberOfUniqueValuesOnDim(Ruleset,i);
d1 5 Mean ←− mean(N1...Nk);
R 6 for i ←− 1 to k do
c2 7 if Ni > Mean then Dims ←− Dims

⋃{i};
|D| 8 for i ∈ Dims do
d2 9 NC(i) ←− optimumNoCutsOnDimension(i, li, ri,Ruleset);
c3 10 N ←− ∏

i∈Dims NCi;
spfac 11 for i ←− 1 to N do

d3 12 (li1, r
i
1, ..., l

i
k, ri

k, Ri) ←− createCut();
recursion 13 CreateNode(li1, r

i
1, ..., l

i
k, ri

k, Ri);
14 return;

All lines with constants ci or di are only some base instructions or we can count
this line by some simple formula. Constants ci represent some small constants
and di some medial constants. The for-cycle on lines 3 and 4 runs through all
rules, in the worst case. The function in cycle on line 4 has to use all rules.
And a result should be counted after each rule is read once. So, the for-cycle
on lines 3 and 4 takes R2 time to build the node. The for-cycle on lines 6 and
7 is more simple. This cycle takes R ∗ c2 time for build the node. The for-cycle
on lines 8 and 9 runs through all dimensions and for each dimensions it count
the optimal number of cuts. The number should be counted by some formula.
So, the for-cycle takes |D| ∗ d2 time to build the tree. The for-cycle on line
11, 12 and 13 runs through all children. But, the number of children is limited
by the constant (marked spfac = space factor). So, assume that N = spfac.
Creating cuts for children should be counted by some formula. So, the for-cycle
takes spfac∗d3 time to build the tree. In the cycle, recursive function is called.
Because the function calls itself, it is not included into the time needed to build
the node.

Then, the time needed to build one node (marked BNHC) is

BNHC = c1 + R2 + d1 + R ∗ c2 + |D| ∗ d2 + c3 + spfac ∗ d3.

However, the largest influence on BNHC has R2. So, we can vanish other
summands

BNHC = R2.

Assume that the tree has not more leaves than rules. In another case the decision

7

tree is feckless. Then the depth of the tree is DTHC = logspfac R. So, we can
count the number of nodes in the tree (marked NNHC), because the number of
children is limited by spfac.

NNHC =
DTHC∑

i=1

spafci

The sum can be counted as

NNHC = spfac ∗ spfaclogspfac R − 1
spfac− 1

= spfac ∗ R− 1
spfac− 1

.

In this expression R is greater than the spfac. So, we can write

NNHC = R.

4.4.2 Building PTree

If we evaluate main parts in code of PTree to build the tree (function ”PN-
ODE buildNode(availRules *ruleset)”, on lines 224 to 592 in ”buildtree.c”),
then we count the BNPT ,

BNPT = 5 ∗R + IntF (f) + 2 ∗R ∗ IntF (f).

In this expression f is field used in this node. We can vanish 5 ∗ R + IntF (f)
in comparison with R ∗ IntF (f). So,

BNPT = R ∗ IntF (f).

This value in comparison with BNHC is great, because in general cases

IntF (f) > R =⇒ BNPT = R ∗ IntF (f) > R2 = BNHC .

Next, we evaluate the number of nodes in the tree. As we know, the depth of
the tree in PTree is

DTPT = max
r∈Ruleset

(NumF (r)).

We can limit the number of children in the tree by

CH = min((max
f∈Fields

IntF (f)), R).

So, the number of nodes is

NNPT =
DTP T∑

i=1

CHi.

8

This sum can be counted as in last paragraph

NNPT = CH ∗ CHDTP T − 1
CH − 1

.

CH is great enough to vanish CH/(CH − 1). Thus,

NNPT = CHDTP T .

Because CH ≥ R then
NNHC < NNPT .

Finally, building one node in HyperCuts needs less time and PTree should have
more nodes. So, the tree should be built faster by HyperCuts method.

4.4.3 Update Complexity

The complexity of updating the tree is very simple. When the tree is updated,
it needs be rebuilt in both methods.

Comparative Table

HyperCuts PTree
Matching in leaves in leaves and nodes
Decision Fields in Node 1 or more 1
Search Speed R

∑
f∈RDT

IntF (f)
Data Structure Size R or R2 uninteresting or breakdown
Build Complexity

Build one node R2 R ∗ IntF (f)
Number of nodes R CHDTP T

Update Complexity Rebuild the Tree Rebuild the Tree

4.5 Choosing fields in PTree

Choosing the best field included in all rules is based on packets’ format. The
algorithm takes field from first to final order by position in packet. It is good
for linear reading of packet and for reducing the list of fields. But, we can’t say
it is the most optimal for height of the tree. Optimization depends on types of
fields. And mainly, rules’ format is very important for optimal work of PTree.

9

5 Conclusion

HyperCuts is better than PTree, because HC is independent on rules’ format,
unlike PT. And in the comparison, HC method has better results than PT
method. PT isn’t a bad program and algorithm, but it depends on the format
of a rules. However, PTree is applicable for some sets of rules.

References

[1] Sumeet Singh, Florin Baboescu, George Varghese, Jia Wang, ”Packet Clas-
sification Using Multidimensional Cutting”, Proceeding of SIGCOMM,
Karlsruhe, Germany, 2003

[2] P. Gupta, and N.McKeown, ”Packet Classification using hierarchical intel-
ligent cutting”, in Proc. Hot Interconnects, 1999

[3] Derek Becker, Radivoje Todorovic, Qihen Wang, ”PTREE: A System for
Flexible, Efficient Packet Classification”, CS524, Spring 2001

10

